Information Systems Archive 2020-2021

 

Information Systems Major Requirements Archive 2020-2021

Learn more about this major

Degree Requirements - 124 credits

Students can earn a bachelor of science in business administration with this major. See the requirements for the bachelor of science in business administration degree.

Information Systems Major Requirements

The BSBA in Information Systems requires completion of a minimum of 21 credit hours, including four (4) required and three (3) elective ISOM courses; seven (7) classes in Information Systems. A cumulative grade point average of at least 2.0 in the Information Systems major and a cumulative grade point average of 2.0 overall must be maintained to graduate

Required Courses (4 courses, 12 credits)

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Credits:

3.00

Description:

Develops problem solving and basic programming skills through a variety of business application assignments. Introduces fundamental control and data structures using the Python programming language. Students learn about the concepts of modern business programming principles. The course builds skills in the areas of programming logic, data structures, control structures, and system development. Testing and debugging techniques and the writing of well-structured code are emphasized.

Prerequisites:

ISOM-210

Credits:

3.00

Description:

Provides an understanding of the role of information and databases in information systems and their role as an organizational resource. Students learn to design databases using normalization and entity-relationship diagrams, develop data models and to build applications with database management systems such as MS Access and SQL. Techniques are examined and applied to realistic business problems through hands-on exercises and projects.

Prerequisites:

ISOM-313, ISOM-314, and ISOM-423 and at least 84 credits

Credits:

3.00

Description:

Explores the issues and approaches in managing the information systems function in organizations and how the IS function integrates/supports/enables various types of organizational capabilities. It takes a management perspective in exploring the acquisition, development, and implementation of plans and policies to achieve efficient and effective information systems. The course addresses issues relating to defining the high level IS infrastructure and the systems that support the operational, administrative, and strategic needs of the organization. The remainder of the course is focused on developing an intellectual framework that will allow leaders of organizations to critically assess existing IS infrastructures and emerging technologies as well as how these enabling technologies might affect organizational strategy. The ideas developed and cultivated in this course are intended to provide an enduring perspective that can help leaders make sense of an increasingly globalized and technology intensive business environment.

Elective Courses (3 courses, 9 credits)

Choose three (3) from the following:

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Credits:

3.00

Description:

Provides a comprehensive introduction to mobile app technology and design concepts. This is an introductory course and assumes no prior programming experience. Students learn how to design, build, and optimize cross-platform mobile app using HTML5 standards. Students will also learn how to convert HTML5 apps into native apps for various mobile platforms. Students use CSS3, JavaScript and several JavaScript frameworks and techniques such as jQuery, jQuery Mobile, and AJAX. In addition, students will use Web services, such as Google Maps, and Web Application Programming Interfaces (Web APIs) to integrate content into their apps.

Prerequisites:

STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

Provides an understanding of the business potential of big data; how to build and maintain data warehouses, and how to analyze and use this data as a source for business intelligence and competitive advantage. Students study data mining concepts and the use of analytics tools and methods for producing business knowledge. Topics include: extraction, transformation and loading; decision support systems; analytics , text, web and data mining models as well as data presentation/visualization including dashboards and scorecards. Students build a data warehouse and practice the extraction and filtering process used to produce high quality data warehouses. Students will use tools such as MS Excel, Tableau, SQL and SAP Business Warehouse.

Prerequisites:

STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces a detailed overview of statistical learning for data mining, inference, and prediction in order to tackle modern-day data analysis problems. This course is appropriate for students who wish to learn and apply statistical learning tools to analyze data and gain valuable hands-on experience with R. Statistical learning refers to a vast set of tools for modeling and understanding complex datasets. Exciting topics include: Regression, Logistic Regression, Linear Discriminant Analysis, Cross-Validation, Bootstrap, Linear/Non-Linear Model Selection and Regularization, Support Vector Methodology, and Unsupervised Learning via Principal Components Analysis and Clustering Methods. Students learn how to implement each of the statistical learning methods using the popular statistical software package R via hands-on lab sessions.

Prerequisites:

Take STATS-240 or STAT-250 and ISOM-130 or by Instructor's Permission

Credits:

3

Description:

"Do you ever wonder if a player is really ""red hot""? Why don't those sports ranking polls ever agree? How can I pick a better fantasy football team? Come and learn about how analytics are used in sports business and sports field operations! This course will cover the statistical concepts and techniques used to assess performance data to provide support for decision making in sports management. Topics include mathematical modeling\"

Prerequisites:

ISOM-130, ISOM-230, and STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

When companies make decisions, they do so with the future in mind and essentially are predicting that their decisions will achieve desired results. Predictive analytics allow people to ask and answer questions that can predict demand and/or outcomes and obtain results that lead to reasoned action. This course develops students' capability in applying the core concepts and techniques of predictive analytics for opportunity identification and risk assessment within the context of organizational decision-making. Students will use data-driven approaches to develop predictive analytical models. Students will create and use data models and techniques, apply trendlines to fit models to data, perform what-if analysis, construct data tables, evaluate scenarios, apply forecasting techniques, simulation and risk analysis. Students will learn to use various presentation and visualization tools to communicate results. Topics include: predictive analytics life cycle, opportunity/issue identification, data preparation, modeling, analysis, forecasting, simulation, risk assessment, and operationalization of predictive analytics.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Credits:

3.00

Description:

This course gives a comprehensive introduction to project management. Projects provide businesses a time-delimited tool for improving, expanding, and innovating - the primary means for converting strategy into action. Project management success differentiates top performing firms. The course will focus on discussion and analysis of business situations that convey core project management skills. In particular, this course focuses on the challenge of managing projects in today's complex, high-pressure work environments. This course can be credited toward PMI Project Management Professional (PMP)(R)certification. PMP(R) and (PMBOK(R)Guide) are registered marks of the Project Management Institute, Inc.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Provides a conceptual, as well as, a mechanical understanding of enterprise integration and enterprise software, business process reengineering and strategies for maximizing benefits from enterprise systems. Students lean to examine complex issues in organizational changes including implementation challenge; risks, costs, and benefits; learning and knowledge management. Hands-on lab projects on the ERP System (provided by SAP) are utilized to reinforce understanding of important enterprise systems and business process concepts. This course is part of the SAP Student Recognition Certificate Program.

Prerequisites:

ISOM-210 or ISOM-201 and Instructor Permission

Credits:

1.00- 3.00

Description:

Independent study allows students to expand their classroom experience by completing research in an area of interest not already covered by Suffolk courses. The student designs a unique project and finds a full-time faculty member with expertise in that topic who agrees to sponsor it and provide feedback as the proposal is refined. A well designed and executed research project broadens and/or deepens learning in a major or minor area of study and may also enhance a student's marketability to potential future employers. Students cannot register for an Independent Study until a full proposal is approved by the faculty sponsor, department chair, and academic dean. Many Independent study proposals require revisions before approval is granted; even with revisions independent study approval is NOT guaranteed. Students are strongly encouraged to submit a proposal in enough time to register for a different course if the proposal is not accepted. For complete instructions, see the SBS Independent/Directed Study Agreement and Proposal form available online.

Additional Major Information

Some major courses are offered only once during an academic year. It is the student's responsibility to work with their Academic Advisor to develop a program of study that ensures courses are taken in the proper sequence and all prerequisites are satisfied. The IS major consists of four (4) required and three (3) elective courses. Six (6) of the seven (7) major courses must be ISOM department courses. Students may transfer a maximum of two (2) courses towards their IS major of which no more than one is a major required course. Prior approval is required for using a non-ISOM course as a major elective.

Information Systems/Big Data and Business Analytics Technology Practicum

Practical information systems and data analytics experience prepares students for real-world challenges in the workplace. All IS and BDBA majors must complete 150 hours of approved professional information systems or big data business analytics experience before graduation. The 150 hours of work experience may be obtained in one or more positions as an intern, part- or full-time employee or volunteer. Prior approval of your position by the IS Practical Experience Coordinator is required. This is accomplished by completing the IS Practicum Approval Form.

Most students satisfy this graduation requirement by completing ISOM-560: IS Practicum, a non-credit, tuition-free, pass/fail course. Students should enroll in ISOM-560 the semester when they expect to complete their 150 hours or the subsequent semester. Students may also satisfy this practicum requirement by enrolling in ISOM-520: IS Internship (1 to 3 credits based on the number of hours worked). ISOM-520 requires junior standing and is a graded course that can only be used as a free elective (cannot be used as a major elective).

 

Prerequisites:

ISOM-210, 1 required ISOM major course, 54 or more earned credits, and Instructor Permission

Credits:

0.00- 3.00

Description:

An internship may be used to satisfy the IS major practical experience requirement of a minimum of 150 hours of information systems/information technology experience. Most internships will exceed 150 hours and may be paid or unpaid. Prior approval of your position by the IS Practical Experience Coordinator is required. This is accomplished by completing the IS Practicum Approval Form with an internship description. The internship description includes the job description, the number of hours of work, the number of credits, grading criteria and any other requirements. Students should enroll in ISOM 520 prior to starting their internship. This is a graded course and cannot be used as a major elective. Students may decide to register for this free elective course as pass fail (see http://www.suffolk.edu/business/departments/11704. php). Prerequisites: Practical Experience Coordinator's Approval Required and Junior Standing, minimum ISOM GPA of 3.0, and minimum overall GPA of 2.5.

Prerequisites:

ISOM-210, 1 required ISOM major course, at least 54 credits, and Instructor Permission

Credits:

0.00

Description:

All Information Systems majors are required to complete 150 hours of information systems/information technology experience. The 150 hours of work experience may be obtained in one or more positions as an intern, part- or full-time employee or volunteer. Prior approval of your position by the IS Practical Experience Coordinator is required. This is accomplished by completing the IS Practicum Approval Form. Students should enroll in ISOM 560 no earlier than the semester when they expect to complete the 150 hours. Student should log their work tasks and accomplishments. Prerequisites: Practical Experience Coordinator's Approval Required

Learning Goals & Objectives

Learning goals and objectives reflect the educational outcomes achieved by students through the completion of this program. These transferable skills prepare Suffolk students for success in the workplace, in graduate school, and in their local and global communities.

Learning Goals
Learning Objectives
Students will…
Upon completion of the program, each student should be able to...
Information Systems Analysis
  • Analyze and determine the quality of a database.
  • Analyze, interpret and evaluate entity relationship diagrams.
  • Analyze, interpret and evaluate a business process solution
Information Systems Knowledge
  • Describe the organizational value of an information systems and its development process.
  • Describe the systems analysis and design process.
  • Describe the flow of information in a business process.
  • Use appropriate techniques (i.e. activity diagrams) to describe a business process for use in systems implementation.
  • Describe the systems life cycle and  identify the tasks within each phase
Information Systems Capability
  • Create and document application solutions to address an IS/IT issue.
  • Create and document database solutions to address an IS/IT issue.
  • Demonstrate ability to use SQL to create, maintain and retrieve information using criteria from a database.

Big Data and Business Analytics Concentration Archive 2020-2021

Big Data and Business Analytics Concentration

For IS Majors only. To receive this concentration, an IS major must take the following three (3) courses as their major electives.

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Prerequisites:

STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

Provides an understanding of the business potential of big data; how to build and maintain data warehouses, and how to analyze and use this data as a source for business intelligence and competitive advantage. Students study data mining concepts and the use of analytics tools and methods for producing business knowledge. Topics include: extraction, transformation and loading; decision support systems; analytics , text, web and data mining models as well as data presentation/visualization including dashboards and scorecards. Students build a data warehouse and practice the extraction and filtering process used to produce high quality data warehouses. Students will use tools such as MS Excel, Tableau, SQL and SAP Business Warehouse.

Prerequisites:

ISOM-130, ISOM-230, and STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

When companies make decisions, they do so with the future in mind and essentially are predicting that their decisions will achieve desired results. Predictive analytics allow people to ask and answer questions that can predict demand and/or outcomes and obtain results that lead to reasoned action. This course develops students' capability in applying the core concepts and techniques of predictive analytics for opportunity identification and risk assessment within the context of organizational decision-making. Students will use data-driven approaches to develop predictive analytical models. Students will create and use data models and techniques, apply trendlines to fit models to data, perform what-if analysis, construct data tables, evaluate scenarios, apply forecasting techniques, simulation and risk analysis. Students will learn to use various presentation and visualization tools to communicate results. Topics include: predictive analytics life cycle, opportunity/issue identification, data preparation, modeling, analysis, forecasting, simulation, risk assessment, and operationalization of predictive analytics.

Fin Tech Concentration for IS Majors Archive 2020-2021

For IS Majors only. To receive the FinTech Concentration, Information Systems majors must take the following three (3) courses as their major electives:

Elective Course (1 course, 3 credits)

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Credits:

3

Description:

Equips students with the principles, methodology and skills required to define, develop and deploy a fully functional dynamic web application. Students learn to customize the content, appearance, and delivery of their website using industry-standard web development tools. Class discussion will focus on web development issues for organizations as well as the role played by development tools such as HTML5, CSS3, and PHP scripting. Each class will include hands-on lab work. A term project is used to wrap the course content together.

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Prerequisites:

GPA of 3.0 or higher required; previous programming course, or instructor approval.

Credits:

3.00

Description:

In this project-based course, students will apply programming language, such as Python or R, to model financial situations and derive appropriate predictions and policy recommendations. Students will learn to use large data, queries, natural language processing, machine learning, data management, and other relevant concepts to apply FinTech to achieve process improvements and explore innovations in financial services.

Prerequisites:

FIN-200

Credits:

3.00

Description:

The course introduces students to the management of international financial-services firms and methods through which financial institutions manage risk. The course focuses on concepts and basic tools for identifying, measuring, and managing risks, such as interest rate risk, credit risk, liquidity risk, market risk and operational risk. The course also introduces key regulations and important ethical issues in the financial-services industry.

Required Courses (4 courses, 12 credits)

Credits:

3.00

Description:

Provides a comprehensive introduction to mobile app technology and design concepts. This is an introductory course and assumes no prior programming experience. Students learn how to design, build, and optimize cross-platform mobile app using HTML5 standards. Students will also learn how to convert HTML5 apps into native apps for various mobile platforms. Students use CSS3, JavaScript and several JavaScript frameworks and techniques such as jQuery, jQuery Mobile, and AJAX. In addition, students will use Web services, such as Google Maps, and Web Application Programming Interfaces (Web APIs) to integrate content into their apps.

Prerequisites:

STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces a detailed overview of statistical learning for data mining, inference, and prediction in order to tackle modern-day data analysis problems. This course is appropriate for students who wish to learn and apply statistical learning tools to analyze data and gain valuable hands-on experience with R. Statistical learning refers to a vast set of tools for modeling and understanding complex datasets. Exciting topics include: Regression, Logistic Regression, Linear Discriminant Analysis, Cross-Validation, Bootstrap, Linear/Non-Linear Model Selection and Regularization, Support Vector Methodology, and Unsupervised Learning via Principal Components Analysis and Clustering Methods. Students learn how to implement each of the statistical learning methods using the popular statistical software package R via hands-on lab sessions.

Prerequisites:

Take FIN-200. GPA of 3.0 or higher required.

Credits:

3.00

Description:

This course introduces students to the terminology, current FinTech themes, future challenges, and opportunities related to the application of technology to financial services. With an emphasis on case studies and guest lectures, the class will discuss datafication, alternative finance, innovative business models, algorithmic trading, data-driven decision making, mobile-only services, robo advisers, machine learning, artificial intelligence, crypto currencies, Blockchain, RegTech, InsureTech, cybersecurity and the rise of TechFin's. This course is equivalent to an Honors-level course and should count towards the SBS Honors Program and Finance Honors Program requirements.

Cybersecurity Concentration Archive 2020-2021

Required Courses

For IS majors only. To receive the Cybersecurity Concentration, Information Systems majors must take the following three (3) courses as their major electives:

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Elective Course

Choose one of the following:

Credits:

3.00

Description:

Presents an in-depth study of corporate crime and financial fraud. Examines accounting devices and schemes employed to defraud stakeholders, failure of industry watchdogs, and the regulatory and legislative environment. Topics include: corporate governance, corporate finance, corporate compliance programs, ethical misconduct by outside legal, accounting,investment and banking professionals, Sarbanes Oxley Act, Foreign Corrupt Practices Act,Organizational Sentencing guidelines, mail fraud, wire fraud, money laundering,conspiracy, securities violations, qui tam litigation(whistleblowers)and financial accounting crimes.

Credits:

3.00

Description:

Study of the varieties of fraud, including financial statement fraud, fraud against organizations, consumer fraud, bankruptcy fraud, tax fraud and e-commerce fraud. The causes, prevention, detection and investigation of fraud are explored. Examination of famous past frauds with hands-on cases are used to apply these concepts and to understand the resolution of fraud in the legal system.

Other electives per instructor permission.

Information Systems Minor Requirements Archive 2020-2021

Learn more about this minor

Information Systems Minor for Business Students (3 courses, 9 credits)

A business student may choose to minor in Information Systems by completing any three (3) of the following:

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Credits:

3.00

Description:

Provides a comprehensive introduction to mobile app technology and design concepts. This is an introductory course and assumes no prior programming experience. Students learn how to design, build, and optimize cross-platform mobile app using HTML5 standards. Students will also learn how to convert HTML5 apps into native apps for various mobile platforms. Students use CSS3, JavaScript and several JavaScript frameworks and techniques such as jQuery, jQuery Mobile, and AJAX. In addition, students will use Web services, such as Google Maps, and Web Application Programming Interfaces (Web APIs) to integrate content into their apps.

Prerequisites:

STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

Provides an understanding of the business potential of big data; how to build and maintain data warehouses, and how to analyze and use this data as a source for business intelligence and competitive advantage. Students study data mining concepts and the use of analytics tools and methods for producing business knowledge. Topics include: extraction, transformation and loading; decision support systems; analytics , text, web and data mining models as well as data presentation/visualization including dashboards and scorecards. Students build a data warehouse and practice the extraction and filtering process used to produce high quality data warehouses. Students will use tools such as MS Excel, Tableau, SQL and SAP Business Warehouse.

Prerequisites:

STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces a detailed overview of statistical learning for data mining, inference, and prediction in order to tackle modern-day data analysis problems. This course is appropriate for students who wish to learn and apply statistical learning tools to analyze data and gain valuable hands-on experience with R. Statistical learning refers to a vast set of tools for modeling and understanding complex datasets. Exciting topics include: Regression, Logistic Regression, Linear Discriminant Analysis, Cross-Validation, Bootstrap, Linear/Non-Linear Model Selection and Regularization, Support Vector Methodology, and Unsupervised Learning via Principal Components Analysis and Clustering Methods. Students learn how to implement each of the statistical learning methods using the popular statistical software package R via hands-on lab sessions.

Prerequisites:

Take STATS-240 or STAT-250 and ISOM-130 or by Instructor's Permission

Credits:

3

Description:

"Do you ever wonder if a player is really ""red hot""? Why don't those sports ranking polls ever agree? How can I pick a better fantasy football team? Come and learn about how analytics are used in sports business and sports field operations! This course will cover the statistical concepts and techniques used to assess performance data to provide support for decision making in sports management. Topics include mathematical modeling\"

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Credits:

3.00

Description:

Develops problem solving and basic programming skills through a variety of business application assignments. Introduces fundamental control and data structures using the Python programming language. Students learn about the concepts of modern business programming principles. The course builds skills in the areas of programming logic, data structures, control structures, and system development. Testing and debugging techniques and the writing of well-structured code are emphasized.

Prerequisites:

ISOM-210

Credits:

3.00

Description:

Provides an understanding of the role of information and databases in information systems and their role as an organizational resource. Students learn to design databases using normalization and entity-relationship diagrams, develop data models and to build applications with database management systems such as MS Access and SQL. Techniques are examined and applied to realistic business problems through hands-on exercises and projects.

Prerequisites:

ISOM-130, ISOM-230, and STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

When companies make decisions, they do so with the future in mind and essentially are predicting that their decisions will achieve desired results. Predictive analytics allow people to ask and answer questions that can predict demand and/or outcomes and obtain results that lead to reasoned action. This course develops students' capability in applying the core concepts and techniques of predictive analytics for opportunity identification and risk assessment within the context of organizational decision-making. Students will use data-driven approaches to develop predictive analytical models. Students will create and use data models and techniques, apply trendlines to fit models to data, perform what-if analysis, construct data tables, evaluate scenarios, apply forecasting techniques, simulation and risk analysis. Students will learn to use various presentation and visualization tools to communicate results. Topics include: predictive analytics life cycle, opportunity/issue identification, data preparation, modeling, analysis, forecasting, simulation, risk assessment, and operationalization of predictive analytics.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Credits:

3.00

Description:

This course gives a comprehensive introduction to project management. Projects provide businesses a time-delimited tool for improving, expanding, and innovating - the primary means for converting strategy into action. Project management success differentiates top performing firms. The course will focus on discussion and analysis of business situations that convey core project management skills. In particular, this course focuses on the challenge of managing projects in today's complex, high-pressure work environments. This course can be credited toward PMI Project Management Professional (PMP)(R)certification. PMP(R) and (PMBOK(R)Guide) are registered marks of the Project Management Institute, Inc.

Prerequisites:

ISOM-313, ISOM-314, and ISOM-423 and at least 84 credits

Credits:

3.00

Description:

Explores the issues and approaches in managing the information systems function in organizations and how the IS function integrates/supports/enables various types of organizational capabilities. It takes a management perspective in exploring the acquisition, development, and implementation of plans and policies to achieve efficient and effective information systems. The course addresses issues relating to defining the high level IS infrastructure and the systems that support the operational, administrative, and strategic needs of the organization. The remainder of the course is focused on developing an intellectual framework that will allow leaders of organizations to critically assess existing IS infrastructures and emerging technologies as well as how these enabling technologies might affect organizational strategy. The ideas developed and cultivated in this course are intended to provide an enduring perspective that can help leaders make sense of an increasingly globalized and technology intensive business environment.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Provides a conceptual, as well as, a mechanical understanding of enterprise integration and enterprise software, business process reengineering and strategies for maximizing benefits from enterprise systems. Students lean to examine complex issues in organizational changes including implementation challenge; risks, costs, and benefits; learning and knowledge management. Hands-on lab projects on the ERP System (provided by SAP) are utilized to reinforce understanding of important enterprise systems and business process concepts. This course is part of the SAP Student Recognition Certificate Program.

Prerequisites:

ISOM-210 or ISOM-201 and Instructor Permission

Credits:

1.00- 3.00

Description:

Independent study allows students to expand their classroom experience by completing research in an area of interest not already covered by Suffolk courses. The student designs a unique project and finds a full-time faculty member with expertise in that topic who agrees to sponsor it and provide feedback as the proposal is refined. A well designed and executed research project broadens and/or deepens learning in a major or minor area of study and may also enhance a student's marketability to potential future employers. Students cannot register for an Independent Study until a full proposal is approved by the faculty sponsor, department chair, and academic dean. Many Independent study proposals require revisions before approval is granted; even with revisions independent study approval is NOT guaranteed. Students are strongly encouraged to submit a proposal in enough time to register for a different course if the proposal is not accepted. For complete instructions, see the SBS Independent/Directed Study Agreement and Proposal form available online.

Information Systems Minor for College of Arts & Sciences Students (5 courses, 15 credits)

After SBS-101 Business Foundations, CAS students are required to take ISOM-210 and three (3) of the following:

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Credits:

3.00

Description:

Provides a comprehensive introduction to mobile app technology and design concepts. This is an introductory course and assumes no prior programming experience. Students learn how to design, build, and optimize cross-platform mobile app using HTML5 standards. Students will also learn how to convert HTML5 apps into native apps for various mobile platforms. Students use CSS3, JavaScript and several JavaScript frameworks and techniques such as jQuery, jQuery Mobile, and AJAX. In addition, students will use Web services, such as Google Maps, and Web Application Programming Interfaces (Web APIs) to integrate content into their apps.

Prerequisites:

STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

Provides an understanding of the business potential of big data; how to build and maintain data warehouses, and how to analyze and use this data as a source for business intelligence and competitive advantage. Students study data mining concepts and the use of analytics tools and methods for producing business knowledge. Topics include: extraction, transformation and loading; decision support systems; analytics , text, web and data mining models as well as data presentation/visualization including dashboards and scorecards. Students build a data warehouse and practice the extraction and filtering process used to produce high quality data warehouses. Students will use tools such as MS Excel, Tableau, SQL and SAP Business Warehouse.

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Credits:

3.00

Description:

Develops problem solving and basic programming skills through a variety of business application assignments. Introduces fundamental control and data structures using the Python programming language. Students learn about the concepts of modern business programming principles. The course builds skills in the areas of programming logic, data structures, control structures, and system development. Testing and debugging techniques and the writing of well-structured code are emphasized.

Prerequisites:

ISOM-210

Credits:

3.00

Description:

Provides an understanding of the role of information and databases in information systems and their role as an organizational resource. Students learn to design databases using normalization and entity-relationship diagrams, develop data models and to build applications with database management systems such as MS Access and SQL. Techniques are examined and applied to realistic business problems through hands-on exercises and projects.

Prerequisites:

ISOM-130, ISOM-230, and STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

When companies make decisions, they do so with the future in mind and essentially are predicting that their decisions will achieve desired results. Predictive analytics allow people to ask and answer questions that can predict demand and/or outcomes and obtain results that lead to reasoned action. This course develops students' capability in applying the core concepts and techniques of predictive analytics for opportunity identification and risk assessment within the context of organizational decision-making. Students will use data-driven approaches to develop predictive analytical models. Students will create and use data models and techniques, apply trendlines to fit models to data, perform what-if analysis, construct data tables, evaluate scenarios, apply forecasting techniques, simulation and risk analysis. Students will learn to use various presentation and visualization tools to communicate results. Topics include: predictive analytics life cycle, opportunity/issue identification, data preparation, modeling, analysis, forecasting, simulation, risk assessment, and operationalization of predictive analytics.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Credits:

3.00

Description:

This course gives a comprehensive introduction to project management. Projects provide businesses a time-delimited tool for improving, expanding, and innovating - the primary means for converting strategy into action. Project management success differentiates top performing firms. The course will focus on discussion and analysis of business situations that convey core project management skills. In particular, this course focuses on the challenge of managing projects in today's complex, high-pressure work environments. This course can be credited toward PMI Project Management Professional (PMP)(R)certification. PMP(R) and (PMBOK(R)Guide) are registered marks of the Project Management Institute, Inc.

Prerequisites:

ISOM-313, ISOM-314, and ISOM-423 and at least 84 credits

Credits:

3.00

Description:

Explores the issues and approaches in managing the information systems function in organizations and how the IS function integrates/supports/enables various types of organizational capabilities. It takes a management perspective in exploring the acquisition, development, and implementation of plans and policies to achieve efficient and effective information systems. The course addresses issues relating to defining the high level IS infrastructure and the systems that support the operational, administrative, and strategic needs of the organization. The remainder of the course is focused on developing an intellectual framework that will allow leaders of organizations to critically assess existing IS infrastructures and emerging technologies as well as how these enabling technologies might affect organizational strategy. The ideas developed and cultivated in this course are intended to provide an enduring perspective that can help leaders make sense of an increasingly globalized and technology intensive business environment.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Provides a conceptual, as well as, a mechanical understanding of enterprise integration and enterprise software, business process reengineering and strategies for maximizing benefits from enterprise systems. Students lean to examine complex issues in organizational changes including implementation challenge; risks, costs, and benefits; learning and knowledge management. Hands-on lab projects on the ERP System (provided by SAP) are utilized to reinforce understanding of important enterprise systems and business process concepts. This course is part of the SAP Student Recognition Certificate Program.

For more information, please email the Information Systems and Operations Management Department or call us at 617-573-8331.

Cybersecurity Minor Archive 2020-2021

Cybersecurity Minor for Business Students (3 courses, 9 credits)

A business student may choose to a Cybersecurity Concentration by completing the following requirements:

Required Courses (2 courses, 6 credits)

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Other electives accepted with instructor permission.

Elective Course (1 course, 3 credits)

Choose one of the following:

Credits:

3.00

Description:

Presents an in-depth study of corporate crime and financial fraud. Examines accounting devices and schemes employed to defraud stakeholders, failure of industry watchdogs, and the regulatory and legislative environment. Topics include: corporate governance, corporate finance, corporate compliance programs, ethical misconduct by outside legal, accounting,investment and banking professionals, Sarbanes Oxley Act, Foreign Corrupt Practices Act,Organizational Sentencing guidelines, mail fraud, wire fraud, money laundering,conspiracy, securities violations, qui tam litigation(whistleblowers)and financial accounting crimes.

Credits:

3.00

Description:

Study of the varieties of fraud, including financial statement fraud, fraud against organizations, consumer fraud, bankruptcy fraud, tax fraud and e-commerce fraud. The causes, prevention, detection and investigation of fraud are explored. Examination of famous past frauds with hands-on cases are used to apply these concepts and to understand the resolution of fraud in the legal system.

Other electives accepted with instructor's permission.

Cybersecurity Minor for CAS Students 4 courses 12 credits

A CAS student may choose to minor in Cybersecurity by meeting the following requirements:

Technical Requirement (1 course, 3 credits)

Prerequisites:

WRI-101 and ENT-101 and at least 24 completed credits

Credits:

3

Description:

Examines the rise of information-enabled enterprises and the role of information technologies/information systems (IT/IS) and e-commerce as key enablers of businesses and social changes globally. Topics include: the effective application of IT/IS to support strategic planning, managerial control, operations and business process integration in the digital economy, IT/IS related issues of ethics, and piracy and security in the information society.

Required Courses

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Elective Course (1 course, 3 credits)

Choose one of the following:

Credits:

3.00

Description:

Presents an in-depth study of corporate crime and financial fraud. Examines accounting devices and schemes employed to defraud stakeholders, failure of industry watchdogs, and the regulatory and legislative environment. Topics include: corporate governance, corporate finance, corporate compliance programs, ethical misconduct by outside legal, accounting,investment and banking professionals, Sarbanes Oxley Act, Foreign Corrupt Practices Act,Organizational Sentencing guidelines, mail fraud, wire fraud, money laundering,conspiracy, securities violations, qui tam litigation(whistleblowers)and financial accounting crimes.

Credits:

3.00

Description:

Study of the varieties of fraud, including financial statement fraud, fraud against organizations, consumer fraud, bankruptcy fraud, tax fraud and e-commerce fraud. The causes, prevention, detection and investigation of fraud are explored. Examination of famous past frauds with hands-on cases are used to apply these concepts and to understand the resolution of fraud in the legal system.

Other electives accepted with Instructor's permission.

FinTech Minor for IS Majors only Archive 2020-2021

IS majors may choose to minor in FinTech by following the requirements below:

Elective Courses 1 course 3 credits

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Credits:

3

Description:

Equips students with the principles, methodology and skills required to define, develop and deploy a fully functional dynamic web application. Students learn to customize the content, appearance, and delivery of their website using industry-standard web development tools. Class discussion will focus on web development issues for organizations as well as the role played by development tools such as HTML5, CSS3, and PHP scripting. Each class will include hands-on lab work. A term project is used to wrap the course content together.

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Prerequisites:

GPA of 3.0 or higher required; previous programming course, or instructor approval.

Credits:

3.00

Description:

In this project-based course, students will apply programming language, such as Python or R, to model financial situations and derive appropriate predictions and policy recommendations. Students will learn to use large data, queries, natural language processing, machine learning, data management, and other relevant concepts to apply FinTech to achieve process improvements and explore innovations in financial services.

Prerequisites:

FIN-200

Credits:

3.00

Description:

The course introduces students to the management of international financial-services firms and methods through which financial institutions manage risk. The course focuses on concepts and basic tools for identifying, measuring, and managing risks, such as interest rate risk, credit risk, liquidity risk, market risk and operational risk. The course also introduces key regulations and important ethical issues in the financial-services industry.

Required Courses (4 courses, 12 credits)

Credits:

3.00

Description:

Provides a comprehensive introduction to mobile app technology and design concepts. This is an introductory course and assumes no prior programming experience. Students learn how to design, build, and optimize cross-platform mobile app using HTML5 standards. Students will also learn how to convert HTML5 apps into native apps for various mobile platforms. Students use CSS3, JavaScript and several JavaScript frameworks and techniques such as jQuery, jQuery Mobile, and AJAX. In addition, students will use Web services, such as Google Maps, and Web Application Programming Interfaces (Web APIs) to integrate content into their apps.

Prerequisites:

STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces a detailed overview of statistical learning for data mining, inference, and prediction in order to tackle modern-day data analysis problems. This course is appropriate for students who wish to learn and apply statistical learning tools to analyze data and gain valuable hands-on experience with R. Statistical learning refers to a vast set of tools for modeling and understanding complex datasets. Exciting topics include: Regression, Logistic Regression, Linear Discriminant Analysis, Cross-Validation, Bootstrap, Linear/Non-Linear Model Selection and Regularization, Support Vector Methodology, and Unsupervised Learning via Principal Components Analysis and Clustering Methods. Students learn how to implement each of the statistical learning methods using the popular statistical software package R via hands-on lab sessions.

Prerequisites:

Take FIN-200. GPA of 3.0 or higher required.

Credits:

3.00

Description:

This course introduces students to the terminology, current FinTech themes, future challenges, and opportunities related to the application of technology to financial services. With an emphasis on case studies and guest lectures, the class will discuss datafication, alternative finance, innovative business models, algorithmic trading, data-driven decision making, mobile-only services, robo advisers, machine learning, artificial intelligence, crypto currencies, Blockchain, RegTech, InsureTech, cybersecurity and the rise of TechFin's. This course is equivalent to an Honors-level course and should count towards the SBS Honors Program and Finance Honors Program requirements.

Information Systems Undergraduate Courses Archive 2020-2021

Prerequisites:

Restricted to students with less than 54 credits. Students with more than 54 credits needing to fulfill their CI requirement should seek approval from the Undergraduate Advising Office.

Credits:

3.00

Description:

Demystifies the creative process by introducing students to creative practice as a disciplined approach to problem-solving and innovation. Students will be encouraged to synthesize existing ideas, images, concepts, and skill sets in original way, embrace ambiguity and support divergent thinking and risk taking.

Prerequisites:

Restricted to students with less than 54 credits. Students with more than 54 credits needing to fulfill their CI requirement should seek approval from the Undergraduate Advising Office.

Credits:

3.00

Description:

In this course students will be introduced to the practice of creativity as a rigorous approach to problem solving requiring research, persistence and grit. Students will work collaboratively to effectively synthesize existing ideas, images, and skill sets in original ways. They will embrace risk and support divergent thinking. In the process, they will become more confident life-long learners.

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Prerequisites:

3.3 GPA or higher

Credits:

3.00

Description:

Provides students with a comprehensive introduction to the core concepts, applications and tools of data acquisition, preparation, querying, analytics, and data management. Students gain hands-on experience using real data to perform these functions. Topics include: data life cycle, big data, analytics, data collection, preparation, organization and storage, aggregation and summary, and presentation/visualization. Students use tools such as MS Excel, MS Access, SQL, and SAS Visual Analytics.

Prerequisites:

MATH-128 or higher and STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces fundamental quantitative methods of using data to make informed management decisions. Topics include: decision modeling, decision analysis, regression, forecasting, optimization, and simulation, as it applies to the study and analysis of business problems for decision support in finance, marketing, service, and manufacturing operations. Practical business cases and examples drawn from finance, marketing, operations management, and other management areas are used to provide students with a perspective on how management science is used in practice. Excel spreadsheets are used extensively to implement decision models.

Prerequisites:

MATH-128 or higher and STATS-240 or STATS-250 and at least a 3.3 GPA

Credits:

3.00

Description:

Introduces fundamental quantitative methods of using data to make informed management decisions. Topics include: decision modeling, decision analysis, regression, forecasting, optimization, and simulation, as it applies to the study and analysis of business problems for decision support in finance, marketing, service, and manufacturing operations. Practical business cases and examples drawn from finance, marketing, operations management, and other management areas are used to provide students with a perspective on how management science is used in practice. Excel spreadsheets are used extensively to implement decision models.

Prerequisites:

WRI-101 and ENT-101 and at least 24 completed credits

Credits:

3.00

Description:

Examines the rise of information-enabled enterprises and the role of information technologies/information systems (IT/IS) and e-commerce as key enablers of businesses and social changes globally. Topics include: the effective application of IT/IS to support strategic planning, managerial control, operations and business process integration in the digital economy, IT/IS related issues of ethics, and piracy and security in the information society.

Prerequisites:

WRI-101 or WRI-H103 and SBS-101 and at least a 3.3 GPA

Credits:

3.00

Description:

Examines the rise of information-enabled enterprises and the role of information technologies/information systems (IT/IS) and e-commerce as key enablers of businesses and social changes globally. Topics include: the effective application of IT/IS to support strategic planning, managerial control, operations and business process integration in the digital economy, IT/IS related issues of ethics, and piracy and security in the information society.

Prerequisites:

STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

Provides an understanding of the business potential of big data; how to build and maintain data warehouses, and how to analyze and use this data as a source for business intelligence and competitive advantage. Students study data mining concepts and the use of analytics tools and methods for producing business knowledge. Topics include: extraction, transformation and loading; decision support systems; analytics , text, web and data mining models as well as data presentation/visualization including dashboards and scorecards. Students build a data warehouse and practice the extraction and filtering process used to produce high quality data warehouses. Students will use tools such as MS Excel, Tableau, SQL and SAP Business Warehouse.

Prerequisites:

STATS-240 or STATS-250

Credits:

3.00

Description:

Introduces a detailed overview of statistical learning for data mining, inference, and prediction in order to tackle modern-day data analysis problems. This course is appropriate for students who wish to learn and apply statistical learning tools to analyze data and gain valuable hands-on experience with R. Statistical learning refers to a vast set of tools for modeling and understanding complex datasets. Exciting topics include: Regression, Logistic Regression, Linear Discriminant Analysis, Cross-Validation, Bootstrap, Linear/Non-Linear Model Selection and Regularization, Support Vector Methodology, and Unsupervised Learning via Principal Components Analysis and Clustering Methods. Students learn how to implement each of the statistical learning methods using the popular statistical software package R via hands-on lab sessions.

Prerequisites:

Take STATS-240 or STAT-250 and ISOM-130 or by Instructor's Permission

Credits:

3

Description:

"Do you ever wonder if a player is really ""red hot""? Why don't those sports ranking polls ever agree? How can I pick a better fantasy football team? Come and learn about how analytics are used in sports business and sports field operations! This course will cover the statistical concepts and techniques used to assess performance data to provide support for decision making in sports management. Topics include mathematical modeling\"

Credits:

3.00

Description:

Students will analyze and evaluate privacy risks facing individual and organizational data and then design and evaluate solutions to protect the data. The course starts by introducing students to basic data privacy principles and the deteriorating state of privacy with frequent data breaches and identity theft explosion. The course then explores the disruption to privacy caused by emerging technologies like mobile, cloud, big data and social media and the consequences. Different privacy solutions including privacy enhancing technologies like Tors, Onions and encryption will be introduced. Various US Data privacy laws like HIPAA are explored and then compared to the European general data privacy regulation (GDPR) regime. The course ends by introducing different data privacy best practices and the "Privacy by Design" paradigm.

Prerequisites:

ISOM-210(formerly ISOM-310)

Credits:

3.00

Description:

Covers the concepts, techniques and tools used in the analysis and design of business information systems. Topics include: the system development cycle, modeling, prototyping and project management. Additionally, the course focuses upon using Object Oriented analysis and design techniques including the UML. Emphasizes the analysis of business operations as well as the interaction between information systems professionals and end-users. A term project applying these concepts and techniques is required.

Credits:

3.00

Description:

Develops problem solving and basic programming skills through a variety of business application assignments. Introduces fundamental control and data structures using the Python programming language. Students learn about the concepts of modern business programming principles. The course builds skills in the areas of programming logic, data structures, control structures, and system development. Testing and debugging techniques and the writing of well-structured code are emphasized.

Prerequisites:

SBS-101 and ISOM-201 and at least 54 credits

Credits:

3.00

Description:

Introduces concepts and tools for managing operations in service/ manufacturing organizations where inputs such as raw material, labor, or other resources into finished services and/or goods. Strategic and tactical issues of operations management (OM), including: operations strategy, product and process design, capacity planning, quality management, inventory management, queueing theory and work force management are addressed. Quantitative models, analytical tools and case studies are used to analyze operational problems that business managers face in both local and global settings.

Prerequisites:

SBS-101, ISOM-201, at least a 3.3 GPA, and at least 54 credits

Credits:

3.00

Description:

Introduces concepts and tools for managing operations in service/ manufacturing organizations where inputs such as raw material, labor, or other resources into finished services and/or goods. Strategic and tactical issues of operations management (OM), including: operations strategy, product and process design, capacity planning, quality management, inventory management, queueing theory and work force management are addressed. Quantitative models, analytical tools and case studies are used to analyze operational problems that business managers face in both local and global settings.

Prerequisites:

ISOM-210

Credits:

3.00

Description:

Provides an understanding of the role of information and databases in information systems and their role as an organizational resource. Students learn to design databases using normalization and entity-relationship diagrams, develop data models and to build applications with database management systems such as MS Access and SQL. Techniques are examined and applied to realistic business problems through hands-on exercises and projects.

Prerequisites:

ISOM-130, ISOM-230, and STATS-240 or STATS-250 or Instructor Permission

Credits:

3.00

Description:

When companies make decisions, they do so with the future in mind and essentially are predicting that their decisions will achieve desired results. Predictive analytics allow people to ask and answer questions that can predict demand and/or outcomes and obtain results that lead to reasoned action. This course develops students' capability in applying the core concepts and techniques of predictive analytics for opportunity identification and risk assessment within the context of organizational decision-making. Students will use data-driven approaches to develop predictive analytical models. Students will create and use data models and techniques, apply trendlines to fit models to data, perform what-if analysis, construct data tables, evaluate scenarios, apply forecasting techniques, simulation and risk analysis. Students will learn to use various presentation and visualization tools to communicate results. Topics include: predictive analytics life cycle, opportunity/issue identification, data preparation, modeling, analysis, forecasting, simulation, risk assessment, and operationalization of predictive analytics.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Introduces Cybersecurity fundamental principles from a risk management approach both at the national and global levels. Common types of computer attacks and counter-attacks are addressed. Security technologies such as biometrics, firewalls, intrusion detection systems and cryptography systems will be analyzed and several hands-one lab exercises on the same are used to connect theory to practice and provide experiential learning. Best practices for Risk analysis and business continuity planning and common frameworks like the CIA triangle and the defence in depth solution are applied to different scenarios.

Credits:

3.00

Description:

This course gives a comprehensive introduction to project management. Projects provide businesses a time-delimited tool for improving, expanding, and innovating - the primary means for converting strategy into action. Project management success differentiates top performing firms. The course will focus on discussion and analysis of business situations that convey core project management skills. In particular, this course focuses on the challenge of managing projects in today's complex, high-pressure work environments. This course can be credited toward PMI Project Management Professional (PMP)(R)certification. PMP(R) and (PMBOK(R)Guide) are registered marks of the Project Management Institute, Inc.

Prerequisites:

ISOM-313, ISOM-314, and ISOM-423 and at least 84 credits

Credits:

3.00

Description:

Explores the issues and approaches in managing the information systems function in organizations and how the IS function integrates/supports/enables various types of organizational capabilities. It takes a management perspective in exploring the acquisition, development, and implementation of plans and policies to achieve efficient and effective information systems. The course addresses issues relating to defining the high level IS infrastructure and the systems that support the operational, administrative, and strategic needs of the organization. The remainder of the course is focused on developing an intellectual framework that will allow leaders of organizations to critically assess existing IS infrastructures and emerging technologies as well as how these enabling technologies might affect organizational strategy. The ideas developed and cultivated in this course are intended to provide an enduring perspective that can help leaders make sense of an increasingly globalized and technology intensive business environment.

Prerequisites:

ISOM-210 and at least 54 credits

Credits:

3.00

Description:

Provides a conceptual, as well as, a mechanical understanding of enterprise integration and enterprise software, business process reengineering and strategies for maximizing benefits from enterprise systems. Students lean to examine complex issues in organizational changes including implementation challenge; risks, costs, and benefits; learning and knowledge management. Hands-on lab projects on the ERP System (provided by SAP) are utilized to reinforce understanding of important enterprise systems and business process concepts. This course is part of the SAP Student Recognition Certificate Program.

Prerequisites:

ISOM-210 or ISOM-201 and Instructor Permission

Credits:

1.00- 3.00

Description:

Independent study allows students to expand their classroom experience by completing research in an area of interest not already covered by Suffolk courses. The student designs a unique project and finds a full-time faculty member with expertise in that topic who agrees to sponsor it and provide feedback as the proposal is refined. A well designed and executed research project broadens and/or deepens learning in a major or minor area of study and may also enhance a student's marketability to potential future employers. Students cannot register for an Independent Study until a full proposal is approved by the faculty sponsor, department chair, and academic dean. Many Independent study proposals require revisions before approval is granted; even with revisions independent study approval is NOT guaranteed. Students are strongly encouraged to submit a proposal in enough time to register for a different course if the proposal is not accepted. For complete instructions, see the SBS Independent/Directed Study Agreement and Proposal form available online.

Prerequisites:

ISOM-210, 1 required ISOM major course, 54 or more earned credits, and Instructor Permission

Credits:

0.00- 3.00

Description:

An internship may be used to satisfy the IS major practical experience requirement of a minimum of 150 hours of information systems/information technology experience. Most internships will exceed 150 hours and may be paid or unpaid. Prior approval of your position by the IS Practical Experience Coordinator is required. This is accomplished by completing the IS Practicum Approval Form with an internship description. The internship description includes the job description, the number of hours of work, the number of credits, grading criteria and any other requirements. Students should enroll in ISOM 520 prior to starting their internship. This is a graded course and cannot be used as a major elective. Students may decide to register for this free elective course as pass fail (see http://www.suffolk.edu/business/departments/11704. php). Prerequisites: Practical Experience Coordinator's Approval Required and Junior Standing, minimum ISOM GPA of 3.0, and minimum overall GPA of 2.5.

Prerequisites:

ISOM-210, 1 required ISOM major course, at least 54 credits, and Instructor Permission

Credits:

0.00

Description:

All Information Systems majors are required to complete 150 hours of information systems/information technology experience. The 150 hours of work experience may be obtained in one or more positions as an intern, part- or full-time employee or volunteer. Prior approval of your position by the IS Practical Experience Coordinator is required. This is accomplished by completing the IS Practicum Approval Form. Students should enroll in ISOM 560 no earlier than the semester when they expect to complete the 150 hours. Student should log their work tasks and accomplishments. Prerequisites: Practical Experience Coordinator's Approval Required